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A. REVIEW OF FIRST YEAR EFFORT:

This investigation concerns the development of a Green's Function
approach to the vibration problem of thin spherical shell segments. The
first year effort culminated in the formulation of the analytical approach
to be used, the development of the governing equations and the methods of
solution. The results were presented in the first year annual report pub-
lished as NASA Contractor Report 602 (September 1966). The analytical
approach, in brief, consists of the development of a set of integral equa-
tions governing a static problem equivalent to the desired vibration prob-
lenm.

The solutions of two fundamental elastostatic problems are used in
superposition to obtain the influence functions (or Green's Functioné) for
the set of governing integral equations. The two fundamental problems are
respectively, (I) that of a complete thin spherical shell on an elastic
foundation subjected to a unit normal load and (II) that of a complete thin
spherical shell on the same elastic foundation subjected to a unit tangential
load. The governing equations for each of these fundamental problems were
developed and-reduced to simple form. Methods of solution were indicated.

The report, in addition, outlined the manner in which the fundamental prob-
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suggested a numerical solution for the resulting integral equations.

B. SUIMMARY OF PROGRESS:

During the first half of the second year effort, numerical solutions
were attenpted for the fundamental problems I and II employing the method
of solution developed earlier and outlined in the annual report. - Serious
shortcomings were uncovered in attempting to follow this solution formulation.
These diﬁficulties stenmed in part from an erroneous assumption of negligible
relative magnitude of the meridianal displacement, v, and also from conver-
gence difficulties (in certain ranges of the independent variable) rendering

numerical superposition of solutions untenable.




A new-problem solution formulation was then evolved for both funda-
mental problems and was successfully applied to obtain numerical solutions
for these fundamental problems. The new formulation is based upon a solution
in terms of Bessel's Functions and Kelvin Functions in the neighborhood of
the load singularity. The Kutta-Merson process of numerical integration
used to obtain complete numerical solutions, which solutions are super-
imposed to match the appropriate boundary conditions. A detailed discussion
of this formulation follows. Plots of resulting solutions for sample

geometric parameters and foundation modulus appear in Appendix I.
+

C. FUNDAMENTAL PROBLEM I, SOLUTION FORMULATION:

For the symmetric bending of the thin spherical shell on an elastic
foundation, the differential equations of equilibrium and the elastic law
may be combined and reduced to the following two equations (corresponding to
equations (11) and (12b) of the Annual Report):

L(Q +vQ=(L-vZ+B)x-(2+V)EY (1)

L) - = - o | @)

where symbols are defined as in earlier reports except (with the spherical

radius taken as unity) new symbols are:

vV = Kv
w = Kw
- - __0
X=v+w

Additionally, eliminating w and the membrane stress resultants between
the equations of the elastic law and the firét two equilibrium equations,
one obtains, |
LE)+@-8)v=0Q+ Q+v)¥ (3)
Finally, solving the first two equations of the elastic law for w and
then eliminating the membrane stress resultants (using equilibrium relations)
. leads to, »
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which permits a direct evaluation of w, when v, Q, v and 0° are knowm.




The strategy of solution of the three simultaneous equations (1) (2)
and (3) in Q, x and v consists of the following five steps:

(1) Obtain an approximate starting solution, consistent with the load
singularity, for small ¢ (which approximation approaches exactness as ¢
approaches zero). _

(2) Employ the Kutta-Merson numerical integration process using the
starting solution as initial values to obtain a complete solution for the
spherical cap (that is, for ¢ up to n/4 radians).

(3) Obtain three additional independent solutions (using the Kutta-
Merson method) for the spherical cap, each associated with different initial
conditions but with no load singularity. .

(4) Obtain six independent solutions for the girth zone (again using
the Kuttd-Merson process), where the variable ¢ extends from ﬂ/2 to 3n/4
radians.

(5) Combine the above ten solutions employing symmetry principles to
obtain the solution to the complete spherical shell on the elastic founda-

tion.

STEP 1

Near the load singularity it is tentatively assumed (and may subsequently
be verified) that the quantity v is of negligible order in comparison to X.
Hence, ignoring the last term in equation (1), upon substitution of equation
(2) into (1) we obtain,

2x+43et5=0
where
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If then ¢ is very small the operator L becomes approximately:
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The resulting fourth order equation then has solutions in terms of Kelvin

LX) _1-_ o _
L=() +¢()

Functions:

A, ker'x + A2 kei'x

X

where

X

Y2 4



From symmetry X must vanish at the origin, hence
X = A2 kei'x
Using the additional boundary condition that the shear Q must satisfy
the load singularity requirement,
lim (2m¢4Q) = -1
¢+ 0
and the condition that w (evaluated by equation 4) must be finite, the following

solution results:

€

Q= [ker'x - 1‘+ ; kei'x]
V21 2}<
X = —=1  rei'x
2V2n qbﬁ
v = —L [kei'x + 1 +2v (ker'x + l)]
2/21 ¥€ 2¥%%a X
W= —%—  keix
4n¥ga
STEP 2

Introducing the symbols,

. = (v _sin ¢)° v =3
1 sin ¢

_ sin _
Y3 " sin ¢ Y4 =Q

v = G sin 9)° Y =3
5 sin ¢ 6 X
the equations (1), (2) and (3) may be rewritten as

Y.° = (B - 2) Y2 +Y, + (1 +v) Y6

1 4
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2 Y1 - Y2 cot ¢

Y. = - 2+ VBT, - L+ WY, + (1 -v:+8)y
3 2 4 6 )
Y4° =Yy - Y, cot ¢
o . _ 1 _ _
Y5 = ” Y4 (1 v) Y6
v.° =

6 Y5 - Y6 cot ¢




. Given the initial conditions obtained from Step 1, the set of equations

may be solved numerically in an efficient manner by the Kutta-Merson method.

STEP 3

Three other solutions of equations (5) may be obtained with three inde-
pendent sets of initial conditions. First corresponding roughly to a membrane
solution we have the initial values (up to third order terms in ¢) which con~

sistently satisfy the equations (5).

3
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L, =95+t%
, 3
- - %
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Yo = 3

Secondly, letting the shear resultant, Q, dominate we have the consistent

set of initial. conditions,

¥, = 0
_ 9
Y, =3
=0
e

Thirdly, letting the bending moment terms dominate we obtain a consistent

set of initial conditions,

3 t
_ 9
Y, =3
2, o 82
Y4 = (1L - v + B) 4
_ 9%
Y6.’2

Using these three sets of initial conditions, three independent solutions
of equations (5) are obtained by the Kutta-Merson numerical integration for the

range of ¢ up to m/4 radians.




STEP 4

Six independent solutions for the girth zone are obtained by letting each
of the functions Yl through Y6 be non-zero independently for the initial con-
ditions. It should be noted that this gives rise to three solutions that are
symmetric with respect to the equator and three that are anti-symmetric, as

the initial conditions are expressed at the equator,

STEP 5

Consider the resultant fundamental problem I to be resolved into symmetric

and anti-symmetric component problems as illustrated below:

L
2
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The symmetric problem gonsists of the four cap solutions of steps (2) and
(3) in superposition matching boundary conditions (at the juncture) with the
superposed three symmetric girth solutions of Step (4). Similarly, the anti-
symmetric problem consists of the four cap solutions in superposition made to
match boundary conditions (at the juncture) of the superimposed three anti-
symmetric girth solutions. Finally the resulting symmetric and anti-symmetric
component problem solutions are added to obtain the complete solution for funda-
mental problem I. Computed results for sample geometric and foundation con-

ditions appeaf in Appendix I.




D. FUNDAMENTAL PROBLEM TI, SOLUTION FORMULATION

For the non-axisymmetric problem of the thin spherical shell on the
elastic foundation, we introduce the following dependent functions:

T = (u sin ¢)° + v

a4 )
d¢

sin 6
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cos ©
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Kw = cos ©
with ¢ and 6 as the spherical polar angles. Consistent with the symmetry for
the unit tangent load problem, the angle 6 is measured from the meredianal
plane containing the unit load.

Governing differential equations in the functions T and u are obtained
from a combination of the equilibrium equations and the elastic law for the
non-axisymmetric problem. Upon simplification and reduction these equations

(corresponding to equations (27) and (29) of the Annual Report) become:

1°° - 1° cot ¢ -~ pT =0 (6)
aPU B B8 _ = s
J (u sin ¢ - TS w) = [l e (L - v)Ju sin ¢
14 v ° 3-v ) _ _20 -
+ T+ T ecot ¢ - [ + v) T+ a]W (7

where the operator J( ) is defined as,
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Introducing new symbols for dependent functions,

Y2 B si; )

Yl = Y2° + Y2 cot ¢

Y, =usin¢ -7 @
Y3 = Y4° +Y, cqt ¢




equations (6) and (7) are expressible as four first order equations:

Y1° = p Y2 (8a)
o _ _
Y2 = Yl Y2 cot ¢ (8b)
S 14+ v . 3-v
Y3 = 3 o) Y4 + ——§—-Y' sin ¢ + 2 Y2 cos ¢ (8¢)
Q 1 -y -
LA+ -7 G e+ DT
° - -—
Y,° =Yy -Y, cot ¢ . (8d)
It should be noted that the function w is known from the solution of fundamental

e -
problem I since by Betti's reciprocal theorem the displaceﬂkunction v of problem

I is equal to -w of problem II.

A solution of equations (8) for the complete sphere, consistent with the
load singularity is obtained in following several steps similar to those for
problem I.

(1) Obtain an approximate starting solution consistent with the

load singularity valid for small ¢.

(2) Ingrate numerically (using the Kutta-Merson method) the equations (8)
employing the starting solution as initial conditions, to obtain a solution

for the hemisphere.

(3) Obtain two additional solutions for the hemisphere with two independent

sets of initial conditions for the no load singularity condition.

(4) Combine the above three solutions employing symmetry principles to
arrive at a solution in superposition for the complete sphere on the

elastic foundation.
STEP 1

Near the load singularity the variable ¢ is small and only the first term
of the Taylor's series for sin ¢ and for cos ¢ are retained. Consequently
equation (6) becomes:

2 .
dy  1dy _ 1 -

2t x dx 1+ 2) y=0 . 9
dx X




where

= = vp
y= o) amdx=/ ¢
Equation (9) has the solutions

y = Il (x), Kl (%) (Bessel's Functions)
The solution K1 (x) is retained:
T = —AKl(x)

Ignoring the function w near the pole (the validity of which is subsequently

verified) and introducing the solution for T, equation (7) becomes:

2
S241L 40+ - -2 kw1l (10)
2t s ds vl
ds s /o
where
Z=u siné and s = l1-v
LA

Combining a particular solution of equation (10) with the complimentary
solution one may obtain:

_A3-v
=01 [——K(S)]

which contains only a logarithmic singularity. From this, for small ¢, we

obtain the dominant term for u,

= - AQ_:I;_V)_ log (s)

and hence for v (considering the definition of T)

;=A[Qz_\’llog (s) _1_2.\’_]
Near the load, the equilibrium boundary condition reduces to

_ [27 . _ .
1 £ (N¢a sin 8 - N, cos 6) sin ¢ d ©

¢
Substituting the elastic law for the membrane stresses and the solutions
for u and Vv, the constant A is evaluated,

1
(1l - v)

thus providing a solution valid near the load singularity.

A= -




STEP 2
The initial wvalues for Yl’ Y2’ Y3, and Y4 for a small value of ¢ may be
obtained directly from the starting solution. The Kutta-Merson procedure is

then employed to carry the solution to ¢ = n/2 radians.
STEP 3

Two additional independent solutions for the hemisphere are obtained
from two independent sets of initial conditions. 4

In one case assuming a finite initial value for N,, a consistent solution

¢

for small ¢ is (considering low order terms):

Y1 = 2

Y, = ¢ |
Y3='2i::i

Y, =154

A second solution is obtained for zero initial N¢:

Yl =0

Y2 =0

Y3 = 2

Y4 = ¢

Two independent solutions result from numerical integration using the

above two sets of solutions as initial conditioms.
STEP 4 |
The complete sphere problem under the action of a unit tangential load

may be resolved into two component problems, one symmetric with respect to

the equatorial plane,the other anti-symmetric.

10
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The boﬁndary conditions at the equator for the symmetric problem are:

v =0 and uv° = 0.

For the anti-symmetric case the equatorial boundary conditions are

v® =0 and u = 0.

Each of the component problems may now be solved independently by super-
position of solutions from Steps (2) and (3) to match the appropriate equatorial
boundary conditions. Then finally, the two component problems are superimposed
to obtain the solution to fundamental problem II. Computed results for sample

geometric and foundation conditions appear in Appendix I.
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APPENDIX I

For the numerical integration of the equations (5) and the equations

(8) and for subsequent computations, numerical values are required for the

dimensionless parameter o, B, and v. These quantities were defined earlier

as follows:

where

R ® o
n

The

ka2
K

Poisson's ratio

shell thickness
radius of shell mid-surface
elastic foundation modulus, force per unit area per unit deflection

membrane stiffness constant

Young's modulus

a sample computation the parameters o, B and v were taken as:
.0001

15.09

.3

governing differential equations were integrated, as outlined earlier

in the report, and the functions 5, 5, and Q¢ were computed for the fundamental

problem I. The results are plotted as functions of the polar angle ¢ in figures

L, )

and (3). The differential equations for the fundamental problem II

were also integrated permitting computation of the functions u and v for problem

II. These results appear as curves shown in figures (4) and (5).
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